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Abstract
We discuss symmetries and reductions of the two-dimensional Burgers equation
with variable coefficient. We classify one-dimensional and two-dimensional
subalgebras of the Burgers symmetry algebra which is infinite-dimensional into
conjugacy classes under the adjoint action of the symmetry group. Invariance
under one-dimensional subalgebras provides reductions to lower-dimensional
partial differential equations. Further reductions of these equations to second
order ordinary differential equations are obtained through invariance under two-
dimensional subalgebras. The reduced ODEs are then analysed and shown that
they belong to the polynomial class of second-order equations which can be
linearized only for particular values of parameters figuring in the coefficient.

PACS numbers: 0220, 0230H, 0230J

1. Introduction

The Korteweg–de Vries–Burgers (KdV–Burgers) equation

(ut + uux + µuxxx − νuxx)x + σuyy = 0 (1.1)

is a prototype example of an evolution equation in 2+1 dimensions which is not completely
integrable. Here µ, ν are real constants and σ = ±1. Although it has an infinite-dimensional
symmetry algebra it does not have a Virasoro structure. The presence of a Virasoro algebra
generally signals integrability for (2+1)-dimensional evolution equations. Travelling wave
solutions of the two-dimensional KdV–Burgers equation have been studied in a series of
papers [1–3].

We restrict ourselves to the two-dimensional generalized Burgers equation

(ut + uux − uxx)x + s(t)uyy = 0. (1.2)

Equation (1.2) with s = constant is sometimes referred to as the Zabolotskaya–Khokhlov
equation in nonlinear acoustics [4, 5]. Painlevé analysis of the constant coefficient version of
(1.2) was carried out in [6]. The authors showed that the equation possesses the conditional
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Painlevé property and obtained its exact solutions by use of truncation. For ν = µ = 0, the
conservation laws and Lie symmetries of equation (1.1) have been investigated in [7] (see also
[8] for a comment).

In this paper we investigate the symmetry group of the variable coefficient partial
differential equation (1.2); that is, the Lie group G of transformations acting on the variables
(x, y, t, u) taking solutions into other solutions such that whenever u = f (x, y, t) is a local
solution of (1.2), then the transformed function f̃ = gf (x, y, t) is a solution for all g ∈ G.
Next we proceed to construct group invariant solutions. A systematic study of group invariant
solutions requires a classification of the subalgebras of the symmetry algebra into conjugacy
classes under the adjoint action of the symmetry group. Here we undertake this task to classify
reductions and thereby exact explicit solutions of equation (1.2). The similar steps, except for
an analysis of the reduced ODEs, have been applied to the study of symmetry properties of
a variable coefficient KP equation in [9]. For a detailed analysis of the symmetry reduction
for the usual KP equation using a loop algebra the reader is referred to [10]. We mention
that some similarity solutions of the constant-coefficient Burgers equation have already been
discussed in [11], but the authors chose subgroups for performing a reduction by restricting
the arbitrary functions in the symmetry group to first-degree polynomials only, rather than to
perform a subgroup classification.

We organize the paper as follows. In the second section, we perform a symmetry
classification of the equation and a classification of one-dimensional subalgebras of the
symmetry algebra. In the third section, using one- and two-dimensional subgroups we reduce
the equation to (1+1)-dimensional partial differential equations and second-order ordinary
differential equations and then discuss the integrability of the reduced ODEs. We summarize
the results in the final section.

2. The symmetry group and its Lie algebra

The method for determining the symmetry group of a differential equation is straightforward
and described in several books [12–14]. The symmetry algebra is realized by vector fields

V = ξ∂x + η∂y + τ∂t + φ∂u (2.1)

where ξ, η, τ, φ are functions of x, y, t, u. These coefficients are to be determined from the
invariance condition

pr3V (E)|E=0 = 0 (2.2)

where E = 0 is the equation under study and pr(3)V stands for the third prolongation of the vector
field (see, for example, [12] for the general prolongation formula). Here we are faced with a
group classification problem that comprises the determination of the coefficient functions in
such a way that the equation admits nontrivial symmetries. Requiring the symmetry condition
(2.2) and solving an over-determined system of linear PDEs we have:

Case I. s(t) arbitrary.
For any function s(t) the symmetry algebra of (1.2) is an infinite-dimensional Lie algebra which
we denote by LP. A general element of LP for an arbitrary s(t) �= constant is represented by

V = X(f ) + Y (g) (2.3)

X(f ) = f (t)∂x + f ′(t)∂u (2.4a)

Y (g) = g(t)∂y − g′(t)
2s(t)

y∂x −
(
g′(t)
2s(t)

)′
y∂u (2.4b)
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where f (t) and g(t) are arbitrary smooth functions and the primes denote time derivatives.
The commutation relations are

[X(f1),X(f2)] = 0 [X(f ), Y (g)] = 0
(2.5)

[Y (g1), Y (g2)] = X

(
1

2s
(g′

1g2 − g1g
′
2)

)

where [ , ] stands for the Lie bracket. It is readily seen that the coefficients of the vector
fields X(f ) and Y (g) multiplying ∂t are necessarily zero. This implies that the symmetry
algebra does not have the structure of a Virasoro algebra. This stems from the fact that the
equation under study is non-integrable. All known integrable equations in 2 + 1 dimensions
have symmetry algebras of Virasoro type.

The vector fields X(f ) and Y (g) can be integrated to obtain the Lie group of
transformations. Thus, if u(x, y, t) is any solution to equation (1.2), then so are

ũ = u(x − εf (t)y, t) + εf ′(t) ε ∈ R (2.6a)

and

ũ = u

(
x +

1

2
g′(t)ε

(
y +

ε

2
g(t)

)
, y − εg(t), t

)
− 1

2
g′′(t)ε

(
y +

ε

2
g(t)

)
(2.6b)

respectively.
The symmetry algebra becomes larger when s(t) has two specific forms:

Case II. s(t) = σ tα, σ = constant.
In this case, in addition to V in (2.3) we have the following basis element (a dilation):

Dα = x∂x +
(3 + 2α)

2
y∂y + 2t∂t − u∂u. (2.7a)

Case III. s(t) = σeαt , σ = constant.
In this case the symmetry algebra is represented by V in (2.3) further extended by the following
additional element

Tα = ∂t +
α

2
y∂y. (2.7b)

When s(t) is constant the symmetry algebra is even much larger.

Case IV. s = σ = constant.
The symmetry algebra is Lp with two additional generators

D0 = x∂x +
3

2
y∂y + 2t∂t − u∂u T0 = ∂t . (2.8)

The non-zero commutators amongstDα, Tα,X(f ) and Y(g) are

[X(f ),Dα] = X(f − 2tf ′) [Y (g),Dα] = Y

(
(3 + 2α)

2
g − 2tg′

)

[X(f ), Tα] = −X(f ′) [Y (g), Tα] = Y

(
α

2
g − g′

)
.

(2.9)

The Lie algebra L with a basis X(f ), Y (g) andDα or Tα can be written as a semi-direct sum

L = {X(f ), Y (g)} ⊕s S (2.10)

where S = {Dα} or S = {Tα}. For the last case we write

L = {X(f ), Y (g)} ⊕s {D0, T0}. (2.11)
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Restricting f (t) and g(t) to be linear polynomials we obtain obvious physical symmetries
spanned by

X ≡ X(1) = ∂x Y ≡ Y (1) = ∂y

B ≡ X(t) = t∂x + ∂u R ≡ Y (t) = −σ
2
y∂x + t∂y

(2.12)

which are space translations, Galilei transformations in the x direction and pseudo-rotations,
respectively. The six-dimensional subalgebra L0 = {T0, X, Y, D0, R, B} corresponding to the
constant coefficient Burgers equation is solvable and contains a five-dimensional nilpotent
ideal (the Nilradical) NR(L0) = {T0, X, Y, R, B} (see table 1).

Table 1. The commutator table for the physical subalgebra L0.

X Y T0 B R D0

X 0 0 0 0 0 X

Y 0 0 0 0 − 1
2σ X

3
2Y

T0 0 0 0 X Y 2T0
B 0 0 −X 0 0 −B
R 0 1

2σ X −Y 0 0 − 1
2R

D0 −X − 3
2Y −2T0 B − 1

2R 0

2.1. Low-dimensional subalgebras of the symmetry algebra

In order to be able to perform symmetry reductions in a systematic way, we need to classify
subalgebras of the infinite-dimensional algebras. We use the approach followed in [10]
as an adaptation of the methods developed for the classification of subalgebras of the finite-
dimensional algebras to infinite-dimensional ones. The difference is that we obtain differential
conditions on the arbitrary functions labelling the group elements, rather than algebraic
conditions on the parameters labelling the group elements of the finite-dimensional group.
We present a classification of the one-dimensional subalgebras of the symmetry algebra into
conjugacy classes under the adjoint action of the symmetry group. We do this individually for
each algebra classified in section 2.

Case I. s(t) = arbitrary �= constant.
Conjugating the general element V = X(f ) + Y (g) by Y (G) and using the commutation
relations (2.5) we obtain

Ad{exp(λY (G))}V = X

(
f − λ

2s
(G′g −Gg′)

)
+ Y (g).

If we choose a function G(t) to be defined by

G(t) = 2ag
∫ t

0
(sfg−2)(u) du + cg

where a and c are arbitrary constants, as the function labelling the element Y (G) of the
symmetry algebra and λ = a−1 as the value of the parameter λ of the one-parameter subgroup
associated with Y(G), we see that if g �= 0, V is conjugate to Y(g), otherwise to X(f ).
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Case II. s = σ tα, α �= 0.
Conjugating the general element V = aDα + X(f ) + Y (g) with a �= 0 by X(F) + Y (G) we
obtain

Ad{exp(λX(F) + µY(G))}V = aDα +X

{
f − λa(F − 2tF ′)

− µat−α

2σ
(G′g −Gg′) +

aµ2t−α

2σ
(GG′ − t (G′2 −GG′′))

}

+ Y

{
g − µa

(
3 + 2α

2
G− 2tG′

)}
(2.13)

where we have used the commutation relations (2.5) and (2.9). With the functions F(t) and
G(t) and parameters λ, µ suitably chosen, X(f ) and Y(g) in V gets transformed away and we
are left with the result that V is conjugate to Dα. If a = 0 then V is either conjugate to Y(g),
g �= 0 or to X(f ), g = 0.

Case III. s = σeαt, α �= 0.
Similarly, conjugating the general element V = aTα + X(f ) + Y(g), a �= 0 by X (F) + Y (G)
one can show that V is conjugate to Tα.

Case IV. s = σ = constant.
Using similar arguments it is easily seen that the general element V = aT0 + bD0 + X(f ) +
Y (g), a, b �= 0 is conjugate to T0 + λD0, λ �= 0. For a = 0, V is conjugate to D0, for b = 0
to T0.

3. Symmetry reductions

3.1. Reductions to PDEs

The general method for performing the symmetry reduction using some specific subgroup G0
of the full symmetry group is to first find the invariants of G0 and rewrite (2.1) in terms of
them. The invariants are obtained by solving the system of PDEs

XiI (x, y, t, u) = 0 i = 1, . . . , r

where {X1, X2, . . . Xr} is some basis for the Lie algebra of G0.
Below we perform reductions of (1.2) by one-dimensional subalgebras.

I.1. Subalgebra L1,1 = {Y(g)}.
We use the substitution

u = W(ξ, t) − 1

4g

(
g′(t)
s(t)

)′
y2 ξ = x +

g′y2

4sg

and obtain the reduced PDE

Wt +WWξ −Wξξ +
g′

2g
W + ρ(t)− s

2g

(
g′

s

)′
ξ = 0

where ρ(t) is an arbitrary function of integration. For ρ = 0 and g = constant this equation is
the one-dimensional Burgers equation

Wt +WWξ −Wξξ = 0.
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I.2. Subalgebra L1,2 = {X(f )}.
The reduction formula and the reduced PDE are

u = W(y, t) +
f ′

f
x, Wyy = −f

′′

sf
.

Integrating we obtain an exact solution depending on three arbitrary functions of time

u = − f ′′

2sf
y2 +

f ′

f
x +A(t)y + B(t)

where A(t) and B(t) are arbitrary functions.
Additional reductions occur when s(t) = σ tα or σeαt.

II. Subalgebra L1 = {Dα}.
Invariance under Dα implies

u = t−1/2W(ξ, η), ξ = xt−1/2, η = yt−(3+2α)/4

with W satisfying the reduced PDE{
−1

2
ξWξ +WWξ − 1

2
W −Wξξ − (3 + 2α)

4
ηWη

}
ξ

+ σWηη = 0. (3.1)

III. Subalgebra L1 = {Tα}.
Invariance under T implies

u = W(x, η) η = ye−αt/2

with W satisfying(
WWx −Wxx − α

2
ηWη

)
x

+ σWηη = 0. (3.2)

3.2. Reductions to ODEs

One can further reduce the above-obtained PDEs (3.1) and (3.2) to ODEs by imbedding Dα

and Tα into two-dimensional subalgebras of the symmetry algebra. To this end we commute
Dα and Tα with an element V = X(f ) + Y(g) and invoke that they form a two-dimensional
subalgebra. This requirement implies that the functions f (t) and g(t) are no longer arbitrary
but take some specific forms. Since there exist two isomorphy classes of two-dimensional Lie
algebras, Abelian and non-Abelian, we distinguish between two algebras:

II1. Abelian subalgebra.

L2,1 = {
Dα,

(
t(3+2α)/4) + νX

(
t1/2

)}
where Dα has the form (2.7a) and ν is a constant. Invariance under the two-dimensional
subalgebra L2,1 gives the invariant solution

u = t−1/2H(ρ) +
ν

2
yt−(5+2α)/4 +

(3 + 2α)(1 + 2α)

64
y2t−(α+2)

ρ = xt−1/2 − νyt−(3+2α)/4 +
3 + 2α

16
y2t−(3+2α)/2

where H(ρ) satisfies the second-order ODE

H ′′ −HH ′+
(ρ

2
− 1

)
H ′ +

(1 − 2α)

8
H = (1 + 2α)(3 + 2α)

32
ρ + C (3.3)

where C is an integration constant. This ODE belongs to the polynomial class of equations of
second order [15]. We have not been able to integrate this ODE for any value of the parameter
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α, neither have we found a first integral of polynomial type. However, for α = −3/2 equation
(3.3) is reduced to the Riccati equation of first order

H ′ − 1
2H

2 + 1
2ρH = c0ρ + c1. (3.4)

By the substitution H = 2(Ĥ + ρ
4 ), one obtains the normal form of (3.4)

Ĥ
′ = Ĥ

2
+ S(ρ) S = −ρ

2

16
+
c0

2
ρ + ĉ1 ĉ1 = c1

2
− 1

4
. (3.5)

This particular value of α is the only value for which (3.3) passes the Painlevé test which is
often an indication for the solution of the equation to be expressed in terms of elementary
functions or elliptic functions. Indeed, for a particular choice of arbitrary constants, namely
when ĉ1 + c2

0 = 0, the general solution of the normalized Riccati equation (3.5) is expressible
in terms of the modified Bessel functions of fractional order in the form

h(ρ) =
√
ρ̂

[
k1 I1/4

(
ρ̂2

2

)
+ k2 I−1/4

(
ρ̂2

2

) ]
ρ̂ = ρ

4
− c0

where Ĥ is obtained from h through logarithmic differentiation as

Ĥ = −h
′

h
.

Thus we have obtained an exact solution of the original equation invariant under the group
generated by {D−3/2, Y + νX(

√
t)}.

II2. Non-Abelian subalgebra.

L2,2 = {
Dα, B + Y

(
t(5+2α)/4)}

where B = X(t) = t∂x + ∂u. Invariance under L2,2 implies that the solution has the form

u = t−1/2H(ρ) + yt−(5+2α)/4 +
(2α + 5)(2α − 1)

32
y2t−(α+2)

ρ = xt−1/2 − yt−(3+2α)/4 +
2α + 5

16
y2t−(3+2α)/2

with H(ρ) satisfying a second order ODE of the same form as (3.3).

III1. Abelian subalgebra.

L2,1 = {
Tα, Y

(
eαt/2

)
+ ∂x

}
. (3.6)

Invariance under (3.6) implies that the solution has the form

u = H(ρ) +
α2

16
y2e−αt

ρ = x − ye−αt/2 +
α

8
y2e−αt

with H(ρ) satisfying the second order ODE

H ′′ −HH ′ −H ′ − α

4
H = C +

α2

8
ρ.

For α = 0 it is immediate to see that this equation has a first integral

H ′ − 1
2H

2 −H = c0ρ + c1 (3.7)

which is a Riccati equation. Again, this equation has an exact solution in terms of Bessel
functions. This means that we have found a solution of the constant coefficient PDE invariant
under {∂t , ∂y + ∂x}.
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III2. Non-Abelian subalgebra.

L2,2 = {
Tα, Y

(
e(α+2)/2t) +X(et )

}
. (3.8)

Invariance under (3.8) implies that the solution is

u = H(ρ) + ye−αt/2 +
(α2 − 4)

16
y2e−αt

ρ = x − ye−αt/2 +
(α + 2)

8
y2e−αt

with H(ρ) satisfying

H ′′ −HH ′ − α + 2

4
H − α2 − 4

8
ρ = C.

Once again, for α = −2, following an integration we have the Riccati equation

H ′ = 1
2H

2 + c0ρ + c1

as a first integral. Solving this equation provides us with the solutions of the original equation
invariant under the two-dimensional subalgebra {∂t − y∂y, ∂y + et (∂x + ∂u)}. However, setting
α = 2 we have

H ′′ −HH ′ −H = C

which is not of the Painlevé type. This is to be expected because transforming from variables
(ρ,H(ρ)) to (R,G(R)) by setting R = H,G = H ′ reduces it to an Abel equation of the
second kind

GGR − RG(R) − R = C.

For other values of α, unfortunately we failed to solve it completely or to find a first integral.

4. Conclusions

The results of sections 2 and 3 can be summarized as follows:

• We investigated the group classification problem for the generalized (2+1)-dimensional
Burgers equation.

• We found a classification of the one-dimensional subalgebras of the symmetry algebra
under the adjoint (conjugate) action of the symmetry group. Next we constructed the
two-dimensional subalgebras by using one-dimensional subalgebras.

• We obtained a classification of the reductions of the original equation with s(t) = σ tα

and s(t) = σeαt to lower-dimensional PDEs and to second-order ODEs.
• We showed that the reduced ODEs can be written in a unified manner

H ′′ −HH ′ + (B0 + B1ρ)H
′ + C0H +D0 +D1ρ = 0

where B1, B0, C0,D1,D0 are constants. For particular values of the parameters α in the
coefficient function s(t), they admit first integrals as Riccati equations whose solutions
are expressible in terms of Bessel functions. On the other hand, we showed that the
reduced ODEs pass the Painlevé test only for these values. This is the case when
s = σ t−3/2, s = σe−2t or s = constant.
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